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1. Let C be a rectifiable curve in En(n > 2), let L(C) be its length and V[H(C)] 
the volume of its convex hull H(C), and consider the problem of maximizing 
V[H(C)] subject to the condition L(C) = constant. Depending on the parity of n 
and on whether C is an open arc, or a closed curve, we have four cases to consider: 
(A) C is closed and n is even, (B) C is open and n is even, (C) C is open and n is odd, 
(D) C is closed and n is odd. 

Under certain restrictive assumptions on C the case (A) (which includes, as a 
particular example, the isoperimetric problem of the circle) was solved by Schoen- 
berg [1] who proved that then 

(1) V[H(C)]/Ln(C) ? [(7r)n)1n!(n/2) !]-1 

and the inequality is strict except when C is similar to the hypercircle given para- 
metrically by 

(2) x2j_1(t) = (sin jt)/j, x2j(t) = (cosjt)/j (j = 1,* n/2) 

where 0 < t < 2ir. In the case (B) one can use the reflection principle to show that 
here the maximizing curve is also given by (2) but with 0 < t < 7r (a semihyper- 
circle), and the isoperimetric inequality is 

(3) V[H(C)]/Ln(C) < 2n /2-l1[(7r/2)n /2(n/2) !n !]-l 

The case (C) with n = 3 was treated by Egervary [2]: the isoperimetric inequality is 

(4) V[H(C)]/L3(C) < (187r .31/2)-l 

and it is strict except when C is one turn of a circular helix of pitch 2- 2. Similar 
treatment applies in general: the maximizing curve is one turn of a hypercircular 
helix. 

The case (D) with n = 3 was considered by the author in [3]. Under certain re- 
strictive conditions on C it is possible to express V[H(C)] as an integral: 

r8/ 4 

(5) V[H(C)] = 4 xyz'ds, 

here accent denotes differentiation with respect to the independent variable s which 
is the arc-length. The integral in (5) is to be maximized subject to the arc-length 
condition X'2 + y'2 + '2 -1 = 0, this leads to the Euler-Lagrange equations 

(6) 4X2X" = xy2, 4X2y"f = -yX2, 2Xz' = xy, 

where X is a constant (the Lagrange multiplier), and the initial conditions are 

(7) x(O) = c1, x'(0) = 0, y(O) = O, y'(O) = c2, z(0) = 0. 
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Hence, in the isoperimetric inequality for the case (D), 

(8) V[H(C)]/L3(C) < B 

the equality occurs if and only if C is a periodic solution of (6) and (7). It is shown 
in [3] that for all cl and C2 there is a real-analytic solution (x, y, z) of (6), valid for all 
s, and for each c, there is C2 = f(ci), such that the solution is periodic. Unlike in the 
cases (A), (B), and (C), the maximizing curve in (D) does not appear to be expressi- 
ble by elementary, or standard transcendental, functions. Our purpose in this note is 
to compute numerically the corresponding isoperimetric constant B of (8) (which we 
propose to call the Baggins constant). 

2. With suitable scaling the system (6) may be written as 

(8a) x = -xy2, y" = -yx2, z' = xy 

and the initial conditions are 

(8b) x(0) = 1, x'(0) = 0, y(O) = , y'(0)= b z(O) = 0 . 
The independent variable t is now proportional to the arc-length s: s = kt. The con- 
stants k and b are very simply related: by (8a) there exists a first integral 
X'2 + y'2 + x2y2 = b2 and since z' = xy, we have k = b. To determine b we con- 
sider the differential system x" =-xy2, y" = -yx2, x(0) = 1, x'(0) = y(O) = 0, 
y'(O) = b; as shown in [3], the periodic solution of it is symmetric with respect to 
the lines x = 0, y = 0, x i y = 0. Writing x = x(t, b), y = y(t, b) and letting 
ti be the smallest positive value of t, for which x(t, b) = y(t, b), we find that t1 and 
b are determined by the equations 

(9) x(ti, b) - y(ti, b) = 0, x'(ti, b) + y'(ti, b) = 0. 
For the numerical work we take advantage of the analyticity of x and y in t. Let 

00 00 

(10) x(t) -E a,tn, y(t) =E b,tn 
o 0 

then by (8a) and (8b) x turns out to be an even function and y an odd one. Substi- 
tuting the series (10) into (8a) we get 

an+2= -[(n + 1)(n + 2)]1 E aibjbk, 
(ll) ~~~~~~~~~~~~i+j+k=n 

bn+2= -[(n + 1)(n + 2)]1 Z biajak- 
i+j+k=n 

Suppose next that for m = 0, 1, ***, n 

(12) laml < aXm ibmI < aXtm 

Then, by (11) and by the parities of x and y, we have the estimates 

Ian+21 _ [(n + 1)(n + 2)]'-a3XnN(n) , Ibn+21 < [(n + 1)(n + 2)]1-a3XnM(n), 

where N(n) (resp. M(n)) is the number of representations of an even (resp. odd) 
integer n in the form i + j + k, with 0 < i, j, k, and i is even (resp. odd) while j and 
k are odd (resp. even). Therefore, for n > 2 

(13) ian+21 _ a3Xn/4 , Ibn+21 _ a3Xn/4. 
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Hence (12) will have been proved inductively to hold for all m if 1 < a, b < aX, 
(initialization, by (8b) and (12)), a _ 2X, (induction, by (12) and (13)). 

To optimize the estimates (12) we make X possibly small by letting a = 2x and 
b = aX, to get X = (b/2)1"2, a = (2b)"'2 so that (12) becomes 

(14) flami : (2b)l2(b/2)iml2 ibm! ? (2b) 12(b/2) m 12 

Now we determine the constants b and t1 from (9), by taking a square grid of values 
for b and t1 (11 by 11), solving the differential system numerically, and refining then 
the grid over the square where (9) appears to have its roots. After this is repeated 
two or three times, we may evaluate x and y numerically for a grid of three points 
only and fit planes through these triples of points. In this way b and t1 are deter- 
mined to be 

(15) b = 0.92114882, t1 = 1.22036757. 

Observe that by (14) the power-series (10) converge for t < (2/b)112 = 1.473 ... 

which exceeds the calculated value t1 so that the solution procedure by using power 
series is justified on the interval 0 < t < t1. Moreover, the estimates (14) lead to 
simple error estimates for truncating the power series for x and y and their deriva- 
tives. 

3. The evaluation of B is now simple. First, we notice the four-fold inversion 
symmetry of the curve C given by (8a) and (8b): if it is rotated by h90' about the 
z-axis the effect is the same as reflecting C in the plane z = Zmax/2. Therefore, the arc 
of C given by 0 < t < t1 (where t1 is given by (15)) has the length bt1 = L(C)/8, and 
by (5) the volume of H(C) is 

b t, 

V[H(C)] = 8 J xyz'dt. 

The integral above is easily computed by integrating the product of truncated power 
series for x, y, and 2', and we get finally B = 0.0031816877. 
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